Rispondi alla discussione

Hai in mano lo schema elettrico del trasmettitore?

se si...possiamo dargli un occhio a cosa si potrebbe modificare, ma senza la vedo dura, potresti cambiare il quarzo di risonanza, ma occhio, ogni quarzo ti costa minimo 15 euro...il gioco vale la candela?

Sai com'è fatto un quarzo di risonanza.


- - - Updated - - -

Un oscillatore al cristallo è un circuito elettronico che usa la risonanza meccanica di un cristallo piezoelettrico vibrante per ottenere un segnale elettrico caratterizzato da una frequenza molto precisa. Questa frequenza è comunemente usata per mantenere una sincronia (come negli orologi al quarzo), per ottenere un segnale di clock stabile per i circuiti integrati digitali, e per stabilizzare la frequenza dei segnali nei trasmettitori radio.

Funzionamento


 Un cristallo è un solido in cui gli atomi, le molecole o gli ioni che lo costituiscono sono disposti in un ordine regolare, ripetuto in tutte e tre le dimensioni spaziali.

 Quando un cristallo di quarzo è tagliato e montato in maniera appropriata, può essere usato per distorcere un campo elettrico applicandogli una tensione tramite un elettrodo  vicino o sopra il cristallo. Questa proprietà è chiamata  piezoelettricità. Quando il campo viene rimosso, il quarzo genera un  campo elettrico finché non ritorna alla sua forma precedente, e tale  fenomeno genera una tensione. Il risultato è che il cristallo di quarzo  si comporta come un circuito composto di un induttore, un condensatore e un resistore, con una precisa frequenza di risonanza (simile a un circuito RLC).

 Il quarzo ha l'ulteriore vantaggio che le sue costanti elastiche e la  sua dimensione cambiano in modo tale che la dipendenza della frequenza  dalla temperatura sia molto bassa. La caratteristica specifica dipende  dal modo della vibrazione e dall'angolo con cui il cristallo è stato  tagliato (in relazione ai suoi assi cristallografici)[SUP][5][/SUP].  In questa maniera, la frequenza di risonanza del cristallo, non cambia  in maniera significativa. Questo significa che un orologio, un filtro o  un oscillatore al quarzo rimane sempre accurato. Per applicazioni  critiche, tipico esempio i frequenzimetri di classe elevata, l'oscillatore al quarzo è inserito in un contenitore controllato in temperatura, chiamato crystal oven (TCXO),  e può essere montato su un ammortizzatore per prevenire gli effetti di  eventuali vibrazioni meccaniche provenienti dall'esterno.

 Praticamente qualsiasi oggetto fatto di un materiale elastico può  essere usato come un cristallo, con trasduttori appropriati, poiché  tutti gli oggetti hanno delle frequenze naturali di risonanza. Per esempio, l'acciaio  è molto elastico ed è caratterizzato da un'alta velocità di  propagazione del suono. È spesso usato perciò in filtri meccanici prima  del quarzo. Le frequenze di risonanza dipendono dalla dimensione, dalla  forma, dall'elasticità  e dalla velocità del suono nel materiale. I cristalli caratterizzati da  alte frequenze di risonanza sono spesso tagliati nella forma di un  semplice piatto rettangolare. Quelli a bassa frequenza invece, come  quelli usati negli orologi digitali, vengono tagliati con la forma di un  diapason.  Per applicazioni che non necessitano di una temporizzazione molto  precisa, viene spesso usato un risuonatore ceramico a basso costo  piuttosto che un cristallo di quarzo.

 I cristalli di quarzo utilizzati per temporizzazioni sono prodotti  per frequenze che vanno da poche decine di kilohertz a decine di  megahertz. La gran parte dei cristalli di quarzo prodotti vengono usati  in dispositivi come orologi da polso, radio, computer e telefoni cellulari, ma essi sono presenti anche in strumentazioni di test e misura, come contatori, generatori di segnali e oscilloscopi.

 Modellazione


 Modello elettrico


  Simbolo elettrico usato per rappresentare un risuonatore basato su un cristallo piezoelettrico.


 

 

  Circuito equivalente che modella un quarzo all'interno di un oscillatore.


 

 

 Un cristallo di quarzo può essere modellato come una rete elettrica con un punto di risonanza a bassa impedenza serie e un punto ad alta impedenza parallelo molto vicini in frequenza. Matematicamente, usando la Trasformata di Laplace, l'impedenza di tale rete può essere scritta come:

 

 cioè:

  dove  è la frequenza complessa (),  è la pulsazione di risonanza serie e  è la pulsazione di risonanza parallelo.

 Modi di risonanza


 Un cristallo di quarzo ha sia una risonanza serie che una parallelo.  La risonanza serie è più bassa di pochi kilohertz rispetto a quella  parallelo. I cristalli al di sotto di 30 MHz lavorano generalmente tra  la risonanza serie e quella parallelo; ciò significa che il cristallo  presenta una reattanza  di tipo induttivo. Aggiungendo un ulteriore capacità ai capi del  cristallo si ottiene uno spostamento della risonanza parallelo verso il  basso. Questo può essere utilizzato per aggiustare la frequenza alla  quale l'oscillatore risuona. I produttori dei cristalli normalmente  tagliano e regolano i loro cristalli per ottenere una specifica  frequenza di risonanza con un carico capacitivo noto aggiunto al  componente. Per esempio, un cristallo 6 pF 32 kHz ha una risonanza  parallelo di 32,768 Hz se gli viene aggiunta una capacità di 6.0 pF.  Senza tale capacità, la sua frequenza di risonanza sarebbe più elevata.


 Il limite pratico per un risuonatore a cristallo "semplice" è intorno  ai 30 MHz, che corrispondono al minimo spessore di quarzo che è  possibile ottenere. I cristalli per frequenze superiori (fino a >200  MHz) sono composti di un numero dispari di lastrine identiche incollate  insieme (quarzi 'overtone'), e lavorano ad una frequenza multipla  di quella delle lastrine componenti: un quarzo composto di tre lastrine  oscillerà a una frequenza tripla di quella delle lastrine componenti.  Sono impiegati generalmente in risonanza serie, dove l'impedenza è  minima e pari alla resistenza serie. Per questi cristalli invece della  capacità parallelo è specificata la resistenza serie (<100 Ω). Per  raggiungere frequenze più elevate, il cristallo può essere fatto  risuonare a uno dei suoi modi più elevati, a frequenze multiple  (armoniche) di quella di risonanza fondamentale. In particolare, vengono  usate esclusivamente le armoniche dispari. Questi cristalli sono  chiamati ad esempio cristalli alla terza, quinta o anche settima  armonica. Per ottenere ciò, il circuito oscillatore contiene tipicamente  anche un ulteriore circuito LC per selezionare l'armonica superiore  desiderata.

 Effetti termici


 La caratteristica di frequenza del cristallo dipende dalla forma e  dal taglio con cui è stato fabbricato. Un cristallo a forma di diapason è  tipicamente tagliato in modo che la caratterista frequenza-temperatura  sia una curva parabolica centrata intorno ai 25 °C. Questo significa che  un oscillatore che utilizza un tale cristallo risuonerà alla frequenza  specificata alla temperatura ambiente, ma oscillerà più lentamente sia a  temperature più alte che più basse. Un tipico coefficiente della  parabola per un cristallo a forma di diapason a 32 kHz è −0,04 ppm/°C².

  Nelle applicazioni reali, ciò significa che un orologio che usa un  tale oscillatore al quarzo manterrà una buona temporizzazione alla  temperatura ambiente, mentre perderà 2 minuti all'anno a 10 gradi  Celsius sopra o sotto tale temperatura e 8 minuti all'anno a 20 gradi  Celsius di differenza.


Indietro
Top